执行效率
最好情况,最坏情况,平均情况时间复杂度
时间复杂度系数,常数,低阶
比较次数和交换(或者移动)次数
内存消耗
能否是原地排序
算法(空间复杂度O(1))
稳固性
相等元素之间原有的先后顺序能否改变
思想: 每次比较相邻两个数据,不满足大小关系要求则交换。一次冒泡至少会让一个元素移动到它应该在的位置。
能否原地排序: 是,只涉及相邻数据交换,只要常量级临时空间,空间复杂度O(1)
能否稳固: 是,相邻两元素大小相等时不做交换
时间复杂度: 最好情况冒泡一次,O(n)。最坏情况冒泡n次,O(n2)。元素交换次数是原始数据逆序度
有序元素对:a[i] <= a[j],假如i < j
逆序元素对:a[i] > a[j],假如i < j
完全有序的数组的有序度称为满有序度(n* (n - 1)/2)
逆序度 = 满有序度 - 有序度
分析平均情况下时间复杂度可结合"有序度"
和“逆序度”
概念,最坏情况需进行n* (n - 1)/2次交换,即平均情况大致需进行n* (n - 1)/4次交换,时间复杂度O(n2)
思想: 分为已排序区间和未排序区间,从尾到头遍历已排序区间的数据,找到数据应该插入的位置将其插入
能否原地排序: 是,不需要额外存储空间,空间复杂度O(1)
能否稳固: 是
时间复杂度: 最好情况O(n),最坏情况O(n2),平均情况(即数组插入数据的平均时间复杂度)O(n2)。元素移动次数是原始数据逆序度
思想: 分为已排序区间和未排序区间,每次从未排序区间找到最小元素,同未排序区间第一个元素交换,将其放到已排序区间末尾。
能否原地排序: 是,空间复杂度O(1)
能否稳固: 否,因元素交换破坏稳固性
时间复杂度: 最好情况,最坏情况和平均情况时间复杂度都为O(n2)
尽管冒泡和插排的时间复杂度都是O(n2),都是原地排序,但从代码实现上看,冒泡需3个赋值操作,插入只要1个,且插排的算法思路有很大优化空间
思想: 要排序一个数组,先把数组从中间分成前后两部分,而后对前后两部分分别排序,再将排序好的两部分合并在一起。运用分治思想
(一般都用递归
来实现)。
实现思路: 递推公式 merge_sort(p...r) = merge(merge_sort(p...q), merge_sort(q+1...r));终止条件 q >= r 不用再继续分解(q=(p+r)/2)
代码示例:
void merge_sort_recursive(int[] arr, int[] reg, int start, int end) { if (start >= end) return; int len = end - start, mid = (len >> 1) + start; int start1 = start, end1 = mid; int start2 = mid + 1, end2 = end; //递归到子序列只有一个数的时候,开始一一返回 merge_sort_recursive(arr, reg, start1, end1); merge_sort_recursive(arr, reg, start2, end2); //-------合并操作,必需在递归之后(子序列有序的基础上)---- int k = start; while (start1 <= end1 && start2 <= end2) reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++]; while (start1 <= end1) reg[k++] = arr[start1++]; while (start2 <= end2) reg[k++] = arr[start2++]; //借用reg数组做合并,而后把数据存回arr中 for (k = start; k <= end; k++) arr[k] = reg[k];}
哨兵简化技巧 在划分后的两个数组最后都加上INT_MAX,减少两次越界判断
由于不可能大于INT_MAX,所以只要比较值就可判断能否越界,不需再用下标判断
能否原地排序: 否,空间复杂度O(n)(任意时刻,CPU只会有一个函数在执行,也就只会有一个临时内存空间在使用,所以最大不会超过n个数据的大小)
能否稳固: 是,合并时按下标优先。
时间复杂度: O(nlogn)(T(1) = C,n=1; T(n) = 2*T(n/2) + n,n>1;推导而来)
思想: 排序p到r的一组数据,择一分区点pivot
,将小于pivot
的放在左边,大于pivot
的放在右边,依次递归。核心思想就是分治
和分区
。
实现思路: 递推公式 quick_sort(p...r) = quick_sort(p...q-1) + quick_sort(q+1, r);终止条件 p >= r
代码示例:
public static void quickSort(int[]arr,int low,int high){ if (low < high) { int middle = getMiddle(arr, low, high); quickSort(arr, low, middle - 1); quickSort(arr, middle + 1, high); }}public static int getMiddle(int[] list, int low, int high) { int tmp = list[low]; while (low < high) { while (low < high && list[high] >= tmp) { high--; } list[low] = list[high]; while (low < high && list[low] <= tmp) { low++; } list[high] = list[low]; } list[low] = tmp; return low;}
利用
游标
原地分区,节省空间,开一个空间存储临时变量(pivot),左右两头的游标不断缩紧,下标对应的数据跟pivot值比照并交换到正确位置。
能否稳固: 否,涉及交换,顺序无法保证
能否原地排序: 是,关键看分区函数
怎样写,利用游标原地分区空间复杂度为O(1)
时间复杂度: O(nlogn)(T(1) = C,n=1; T(n) = 2*T(n/2) + n,n>1;推导而来),极端情况会退化为O(n2)
思想: 将要排序的数据分到几个有序
的桶里,每个桶里的数据再单独进行排序,最后把每个桶的数据依次取出,组成有序序列。
代码示例:
public class BucketSort {/*** 对arr进行桶排序,排序结果仍放在arr中*/public static void bucketSort(double arr[]){ //--------------分桶----------------- int n = arr.length; //存放桶的链表 ArrayList bucketList[] = new ArrayList [n]; //每个桶是一个list,存放此桶的元素 for(int i =0;i<n;i++){ //下取等 int temp = (int) Math.floor(n*arr[i]); //若不存在该桶,就新建一个桶并加入到桶链表中 if(null==bucketList[temp]) bucketList[temp] = new ArrayList(); //把当前元素加入到对应桶中 bucketList[temp].add(arr[i]); } //------------桶内排序------------ //对每个桶中的数进行插入排序 for(int i = 0;i<n;i++){ if(null!=bucketList[i]) insert(bucketList[i]); } //----------------合并桶内数据------------- //把各个桶的排序结果合并 int count = 0; for(int i = 0;i<n;i++){ if(null!=bucketList[i]){ Iterator iter = bucketList[i].iterator(); while(iter.hasNext()){ Double d = (Double)iter.next(); arr[count] = d; count++; } } }}/*** 用插入排序对每个桶进行排序(用快排时间复杂度降低)* 从小到大排序*/public static void insert(ArrayList list){ if(list.size()>1){ for(int i =1;i<list.size();i++){ if((Double)list.get(i)<(Double)list.get(i-1)){ double temp = (Double) list.get(i); int j = i-1; for(;j>=0&&((Double)list.get(j)>(Double)list.get(j+1));j--) list.set(j+1, list.get(j)); //后移 list.set(j+1, temp); } } }}}
时间复杂度: O(n),将n个数据划分到m个桶里,每个桶有k=n/m个元素,桶内用快排则每个桶时间复杂度为O(klogk),m个桶为O(mklogk),k=n/m代入,整个桶时间复杂度为O(nlog(n/m)),当m接近n时接近O(n)。
适用条件: 首先,要排序的数据需要很容易
就能划分成m个桶;其次,数据在各个桶之间的分布是比较均匀
的。分布不均的极端情况,时间复杂对退化为O(nlogn)(数据都划分到一个桶里)
适用场景: 如外部排序
,大量数据,存储在外部磁盘中,分桶后每个桶的数据一次放入内存中快排排序,若一次分桶后数据量仍然较大的文件可继续划分,直到所有文件都能读入内存。
思想: n个数据所处范围的最大值为k,分为k个桶,每个桶内数值相同
,省掉桶内排序的时间,是桶排序的一种特殊情况。
实现思路: 拿考生查分举例(原始数列如A[8]={2,5,3,0,2,3,0,3}),一分一个桶,并对数组顺序求和(即数组C[k]里存储小于等于分数k的考生个数)得到的数列如 C[6]={2,2,4,7,7,8};从后向前一次扫描数组A,扫描到3时从数组C中找到下标为3的计数7,说明这个3是排序后的有序数组(R[])中第7位,当3放入数组R后相应C[3]减1,变成6。
代码示例:
// 计数排序,a 是数组,n 是数组大小。假设数组中存储的都是非负整数。public void countingSort(int[]a, int n) { if (n <= 1) return; // 查找数组中数据的范围 int max = a[0]; for (int i = 1; i < n; ++i) { if (max < a[i]) { max = a[i]; } } int[] c = new int[max + 1];// 申请一个计数数组 c,下标大小 [0,max] for (int i = 0; i <= max; ++i){ c[i] = 0; } // 计算每个元素的个数,放入 c 中 for (int i = 0; i < n; ++i) { c[a[i]]++; } // 依次累加 for (int i = 1; i <= max; ++i){ c[i] = c[i-1] + c[i]; } // 临时数组 r,存储排序之后的结果 int[] r = new int[n]; // 计算排序的关键步骤,有点难了解 for (int i = n - 1; i >= 0; --i) { int index = c[a[i]]-1; r[index] = a[i]; c[a[i]]--; } // 将结果拷贝给 a 数组 for (int i = 0; i < n; ++i) { a[i] = r[i]; } }
适用场景: 数据范围不大(k比n小),只能给非负整数排序或者转化为非负整数。
思想: 将整数按位数切割成不同的数字,而后按每个位数分别比较。
时间复杂度: O(n),数据有k位,每次排序O(n),k次O(kn)*,k不大时近似O(n)
能否原地排序: 是。
适用场景: 需要可以分割出独立的“位”来比较,且位之间有递进关系(高低位),且每一位数据范围不能太大要可以用线性排序算法完成。
数据不等长的情况可补位,如单词排序可补“0”,字母的ASCII值都大于“0”,不影响原顺序。
参考:《数据结构与算法之美》王争
爱国者P7000Z m2固态硬盘2t PCIe4.0 M.2 SSD台式机电脑PS5笔记本
intel/英特尔i7 13700K/13700KF华硕Z790/Z690台式机主板CPU套装
【金汤佛跳墙】天海藏佛跳墙加热即食鲍鱼捞饭海鲜冷冻炖罐金汤Z
raz分级阅读绘本美国原版 aa/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O级全集 reading a to z 幼少儿英语启蒙进口教材小蝌蚪小达人点读版笔
intel/英特尔i7 13700K/KF搭微星刀锋Z790/迫击炮B760主板CPU套装
【官方正品】小天才电话手表D3/Z6S学生儿童手表智能定位4G全网通视频通话小学初高中男女孩Z5A旗舰【91】