TensorFlow HOWTO 5.1 循环神经网络(时间序列)

  • 时间:2018-12-26 23:27 作者:ApacheCN_飞龙 来源:ApacheCN_飞龙 阅读:417
  • 扫一扫,手机访问
摘要:5.1 循环神经网络(时间序列)循环神经网络(RNN)用于建模带有时间关系的数据。它的架构是这样的。image在最基本的 RNN 中,单元(方框)中的操作和全连接层没什么区别,都是线性变换和激活。它完全可以看做多个全连接层的横向扩展。但是操作数量多了之后,就会有梯度消失和爆炸的问题,于是人们改良了

5.1 循环神经网络(时间序列)

循环神经网络(RNN)用于建模带有时间关系的数据。它的架构是这样的。

image

在最基本的 RNN 中,单元(方框)中的操作和全连接层没什么区别,都是线性变换和激活。它完全可以看做多个全连接层的横向扩展。

但是操作数量多了之后,就会有梯度消失和爆炸的问题,于是人们改良了 RNN 单元,增加了精巧的结构来避免这样问题。这是 RNN 的几种改良结构:

image

操作步骤

导入所需的包。

import tensorflow as tfimport numpy as npimport pandas as pdimport matplotlib as mplimport matplotlib.pyplot as plt

导入数据,并进行预解决。我们使用国际航班乘客数据集,因为它不存在于任何现有库中,我们需要先下载它。

ts = pd.read_csv('international-airline-passengers.csv', usecols=[1], header=0).dropna().values.ravel()

之后,我们需要将其转换为 RNN 单元可以接受的格式。可接受的格式是三维的,维度分别表示样本、时间和特征。我们需要一个窗口大小,表示几个历史值与当前值有关,而后我们按照它来切分时间序列,就能得到样本。

我仅仅使用原始特征,也就是乘客数量。我并不是表明 RNN 预测得有多好,只是告诉大家 RNN 怎样用。以后有了更好的特征再补充。

wnd_sz = 5ds = []for i in range(0, len(ts) - wnd_sz + 1):    ds.append(ts[i:i + wnd_sz])ds = np.asarray(ds)x_ = ds[:, 0:wnd_sz - 1]y_ = ds[:, [wnd_sz - 1]]x_ = np.expand_dims(x_, 2)

之后是训练集和测试集的划分。同样要注意绝对不能打乱。

train_size = int(len(x_) * 0.7)x_train = x_[:train_size]y_train = y_[:train_size]x_test = x_[train_size:]y_test  = y_[train_size:]

因为 RNN 单元里面使用了tanh激活函数,它对于数据的尺度非常敏感,我们需要将数据标准化。但是,假如我们遵循传统方法,就发现效果不是很好,RNN 甚至不能预测趋势。观察数据集就会发现,后面的数据显著大于前面的数据。假如我们使用训练集的均值和标准差来标准化,依旧是如此。换句话说,对于训练集来说,测试集是“新的分布”。所以我们分别计算训练集和测试集的均值和标准差,并使用它们自己的均值和标准差,将训练集和测试集标准化。

x_mu_train = x_train.mean(0)x_sigma_train = x_train.std(0)y_mu_train = y_train.mean(0)y_sigma_train = y_train.std(0)x_train = (x_train - x_mu_train) / x_sigma_trainy_train = (y_train - y_mu_train) / y_sigma_trainx_mu_test = x_test.mean(0)x_sigma_test = x_test.std(0)y_mu_test = y_test.mean(0)y_sigma_test = y_test.std(0)x_test = (x_test - x_mu_test) / x_sigma_testy_test = (y_test - y_mu_test) / y_sigma_test

定义超参数。

变量含义
n_step时间步长
n_input样本特征数
n_epoch迭代数
n_hidden循环层的单元数
n_output输出层单元数
lr学习率
n_step = wnd_sz - 1n_input = 1n_hidden = 4n_output = 1n_epoch = 10000lr = 0.1

搭建模型。循环层之后增加了一个输出层,目的是把循环层输出的四个特征压缩为一个特征,与标签匹配。

变量含义
x输入
y真实标签
cell循环层
w_l2输出层的权重
b_l2输出层的偏置
h_l1循环层的输出
h_l2模型的输出
x = tf.placeholder(tf.float64, [None, n_step, n_input])y = tf.placeholder(tf.float64, [None, n_output])cell = tf.nn.rnn_cell.GRUCell(n_hidden)w_l2 = tf.Variable(np.random.rand(n_hidden, n_output))b_l2 = tf.Variable(np.random.rand(1, n_output))h_l1, _ = tf.nn.dynamic_rnn(cell, x, dtype=tf.float64)h_l2 = h_l1[:, -1] @ w_l2 + b_l2

定义 MSE 损失、优化操作、和 R 方度量指标。

变量含义
loss损失
op优化操作
r_sqrR 方
loss = tf.reduce_mean((h_l2 - y) ** 2)op = tf.train.AdamOptimizer(lr).minimize(loss)y_mean = tf.reduce_mean(y)r_sqr = 1 - tf.reduce_sum((y - h_l2) ** 2) / tf.reduce_sum((y - y_mean) ** 2)

使用训练集训练模型。

losses = []r_sqrs = []with tf.Session() as sess:    sess.run(tf.global_variables_initializer())        for e in range(n_epoch):        _, loss_ = sess.run([op, loss], feed_dict={x: x_train, y: y_train})        losses.append(loss_)

使用测试集计算 R 方。

        r_sqr_ = sess.run(r_sqr, feed_dict={x: x_test, y: y_test})        r_sqrs.append(r_sqr_)

每一百步打印损失和度量值。

        if e % 100 == 0:            print(f'epoch: {e}, loss: {loss_}, r_sqr: {r_sqr_}')

得到模型对训练特征和测试特征的预测值。

    y_train_pred = sess.run(h_l2, feed_dict={x: x_train})    y_test_pred = sess.run(h_l2, feed_dict={x: x_test})    y_train_pred = y_train_pred * y_sigma_train + y_mu_train    y_test_pred = y_test_pred * y_sigma_test + y_mu_test

输出:

epoch: 0, loss: 1.172066950288726, r_sqr: 0.08181895235767012epoch: 100, loss: 0.06762743481295605, r_sqr: 0.74114029701611epoch: 200, loss: 0.04335752219908887, r_sqr: 0.6723681622904742epoch: 300, loss: 0.030765678607308333, r_sqr: 0.6122519542608709epoch: 400, loss: 0.0255667258649117, r_sqr: 0.5849438991657725epoch: 500, loss: 0.027757059089794138, r_sqr: 0.5547220968537527epoch: 600, loss: 0.02280867896340781, r_sqr: 0.5770103850696798epoch: 700, loss: 0.021203888157209534, r_sqr: 0.5588744061563752epoch: 800, loss: 0.020631124908383643, r_sqr: 0.5340900532988054epoch: 900, loss: 0.01848138445620317, r_sqr: 0.4793500483558242epoch: 1000, loss: 0.01750574268333934, r_sqr: 0.4363987472239601epoch: 1100, loss: 0.019063501795946507, r_sqr: 0.39722141072773787epoch: 1200, loss: 0.0162686638744368, r_sqr: 0.3656020052876743epoch: 1300, loss: 0.01700178459519973, r_sqr: 0.34215312925023267epoch: 1400, loss: 0.01680496271967236, r_sqr: 0.32958240891225643epoch: 1500, loss: 0.022387361152892183, r_sqr: 0.311875062539985epoch: 1600, loss: 0.01692835079726568, r_sqr: 0.31973211945726576epoch: 1700, loss: 0.014981184565736732, r_sqr: 0.34878737027421214epoch: 1800, loss: 0.015259222044438638, r_sqr: 0.34762914874016715epoch: 1900, loss: 0.013233242381529384, r_sqr: 0.33428957917112656epoch: 2000, loss: 0.013406887787008756, r_sqr: 0.33925822033716413epoch: 2100, loss: 0.014663732662643054, r_sqr: 0.347748811545596epoch: 2200, loss: 0.013725021637547831, r_sqr: 0.3537942857251979epoch: 2300, loss: 0.012930256601236268, r_sqr: 0.34525246614475136epoch: 2400, loss: 0.013634394369979042, r_sqr: 0.31935143022735935epoch: 2500, loss: 0.012295407249325577, r_sqr: 0.32843801172553166epoch: 2600, loss: 0.012086876034542369, r_sqr: 0.2944659162449187epoch: 2700, loss: 0.011431132027934963, r_sqr: 0.3320304352651986epoch: 2800, loss: 0.026766484877065972, r_sqr: 0.3516603080525481epoch: 2900, loss: 0.013249484588141427, r_sqr: 0.32412481149383066epoch: 3000, loss: 0.01105305279694339, r_sqr: 0.3292310540476926epoch: 3100, loss: 0.011470806104939772, r_sqr: 0.3297084772513311epoch: 3200, loss: 0.011529391738337445, r_sqr: 0.32604568271503975epoch: 3300, loss: 0.016529603402840765, r_sqr: 0.3043582054899223epoch: 3400, loss: 0.013990350362048133, r_sqr: 0.3199655109188301epoch: 3500, loss: 0.01153881610786597, r_sqr: 0.3133999574164319epoch: 3600, loss: 0.012797147535482193, r_sqr: 0.31258610293795597epoch: 3700, loss: 0.011476855518680756, r_sqr: 0.34671798591970837epoch: 3800, loss: 0.010467519750448642, r_sqr: 0.3104500031552391epoch: 3900, loss: 0.010726962231936567, r_sqr: 0.3138785388392976epoch: 4000, loss: 0.011354515890079096, r_sqr: 0.3439112763768726epoch: 4100, loss: 0.010956935944379312, r_sqr: 0.33047301867737333epoch: 4200, loss: 0.010516217542845503, r_sqr: 0.3169866902021138epoch: 4300, loss: 0.017644784078390447, r_sqr: 0.30790429205962355epoch: 4400, loss: 0.010311798410482015, r_sqr: 0.33750001847417244epoch: 4500, loss: 0.012096887824821146, r_sqr: 0.3483536401639381epoch: 4600, loss: 0.010336452329588753, r_sqr: 0.333357260461554epoch: 4700, loss: 0.010768585264597813, r_sqr: 0.3286332805909209epoch: 4800, loss: 0.010187296826748472, r_sqr: 0.3508737658734946epoch: 4900, loss: 0.012830964380652418, r_sqr: 0.38883425472040245epoch: 5000, loss: 0.010034723893693883, r_sqr: 0.34865494006975606epoch: 5100, loss: 0.018500185229121037, r_sqr: 0.37866142043477613epoch: 5200, loss: 0.010063261243586386, r_sqr: 0.34191028337439755epoch: 5300, loss: 0.011189870387229503, r_sqr: 0.34997022979225245epoch: 5400, loss: 0.011487597291485683, r_sqr: 0.31996396612360156epoch: 5500, loss: 0.018130474919110774, r_sqr: 0.40163834751360294epoch: 5600, loss: 0.010631864046823009, r_sqr: 0.31888613030550417epoch: 5700, loss: 0.010235333409754856, r_sqr: 0.33371577618904724epoch: 5800, loss: 0.017054583875343695, r_sqr: 0.4573069550292207epoch: 5900, loss: 0.010375495082076958, r_sqr: 0.34263745746177443epoch: 6000, loss: 0.02899888987961715, r_sqr: 0.4731489130962029epoch: 6100, loss: 0.009635932593390793, r_sqr: 0.3377314247566131epoch: 6200, loss: 0.009756606958491803, r_sqr: 0.3433460486517317epoch: 6300, loss: 0.015849799410205617, r_sqr: 0.38774652539473653epoch: 6400, loss: 0.00952936061724416, r_sqr: 0.3316576525214012epoch: 6500, loss: 0.01726899798192304, r_sqr: 0.3273077681611758epoch: 6600, loss: 0.009523356787685604, r_sqr: 0.3307726070509249epoch: 6700, loss: 0.012766831260869482, r_sqr: 0.3307548009627649epoch: 6800, loss: 0.009289520442372325, r_sqr: 0.32373411787154416epoch: 6900, loss: 0.011158193836457308, r_sqr: 0.32997251352858914epoch: 7000, loss: 0.02869441623350593, r_sqr: 0.3338995201916093epoch: 7100, loss: 0.018485258063551675, r_sqr: 0.2938792287466744epoch: 7200, loss: 0.008861181401821593, r_sqr: 0.32004037549190045epoch: 7300, loss: 0.00867730190276807, r_sqr: 0.31307907559266057epoch: 7400, loss: 0.010568595192759116, r_sqr: 0.3007627324642683epoch: 7500, loss: 0.008931675261205094, r_sqr: 0.3355236299841886epoch: 7600, loss: 0.01437912261193081, r_sqr: 0.3118478993546139epoch: 7700, loss: 0.013553350799683056, r_sqr: 0.3492071104037119epoch: 7800, loss: 0.030876872968019105, r_sqr: 0.31738784411969434epoch: 7900, loss: 0.010089701030161817, r_sqr: 0.3301184791799566epoch: 8000, loss: 0.01147013359703656, r_sqr: 0.30306917655113186epoch: 8100, loss: 0.009855414853123119, r_sqr: 0.34582101555677947epoch: 8200, loss: 0.014423066317111677, r_sqr: 0.3470667522167451epoch: 8300, loss: 0.011664752107448714, r_sqr: 0.32157739869359203epoch: 8400, loss: 0.009646714124369984, r_sqr: 0.3355179490543708epoch: 8500, loss: 0.008793324000994002, r_sqr: 0.2839973244304941epoch: 8600, loss: 0.009740176108560508, r_sqr: 0.324717537310496epoch: 8700, loss: 0.008509925688666948, r_sqr: 0.29162404590044055epoch: 8800, loss: 0.00935785011763191, r_sqr: 0.2925641966682784epoch: 8900, loss: 0.010778117882046828, r_sqr: 0.2969009246659946epoch: 9000, loss: 0.008386197722733947, r_sqr: 0.31203296266480274epoch: 9100, loss: 0.01152050463672165, r_sqr: 0.32619935954711543epoch: 9200, loss: 0.008279818958514217, r_sqr: 0.3172741922458261epoch: 9300, loss: 0.00767664017767626, r_sqr: 0.33894394589120425epoch: 9400, loss: 0.0093665602478405, r_sqr: 0.3409878486332283epoch: 9500, loss: 0.014677227625938132, r_sqr: 0.3553809732953209epoch: 9600, loss: 0.008036392158721397, r_sqr: 0.33729133931823474epoch: 9700, loss: 0.011275509041766035, r_sqr: 0.30956775357004673epoch: 9800, loss: 0.00885348178403466, r_sqr: 0.3402377958439502epoch: 9900, loss: 0.009747783923937898, r_sqr: 0.3843754214763523

绘制时间序列及其预测值。

plt.figure()plt.plot(ts, label='Original')y_train_pred = np.concatenate([    [np.nan] * n_input,     y_train_pred.ravel()])y_test_pred = np.concatenate([    [np.nan] * (n_input + train_size),    y_test_pred.ravel()])plt.plot(y_train_pred, label='y_train_pred')plt.plot(y_test_pred, label='y_test_pred')plt.legend()plt.show()
image

绘制训练集上的损失。

plt.figure()plt.plot(losses)plt.title('Loss on Training Set')plt.xlabel('#epoch')plt.ylabel('MSE')plt.show()
image

绘制测试集上的 R 方。

plt.figure()plt.plot(r_sqrs)plt.title('$R^2$ on Testing Set')plt.xlabel('#epoch')plt.ylabel('$R^2$')plt.show()
image

扩展阅读

  • 了解 LSTM 网络
  • 机器学习实用指南:十四、循环神经网络
  • DeepLearningAI 笔记:序列模型
  • 全部评论(0)
最新发布的资讯信息
【系统环境|】2FA验证器 验证码如何登录(2024-04-01 20:18)
【系统环境|】怎么做才能建设好外贸网站?(2023-12-20 10:05)
【系统环境|软件环境】梦幻仙域游戏攻略(2023-12-19 10:02)
【系统环境|软件环境】梦幻仙域游戏攻略(2023-12-19 10:02)
【系统环境|】卡帕部落揭秘潮玩新宠,探究玩法(2023-12-14 09:45)
【系统环境|数据库】 潮玩宇宙游戏道具收集方法(2023-12-12 16:13)
【系统环境|】如何开发搭建卡帕部落模式源码(2023-12-12 10:44)
【系统环境|】遥遥领先!青否数字人直播系统5.0发布,支持真人接管实时驱动!(2023-10-12 17:31)
【系统环境|服务器应用】克隆自己的数字人形象需要几步?(2023-09-20 17:13)
【系统环境|】Tiktok登录教程(2023-02-13 14:17)
手机二维码手机访问领取大礼包
返回顶部